1	(a	(i)	rate at which methanol formed by forward reaction equals rate it is reacting in back reaction rate of forward reaction equals rate of back reaction allow [1]	[1] [1]
		(ii)	low/lower/decreased temperature high/higher/increased pressure Explanations not needed but if they are given they must be correct IGNORE values of temperature and pressure	[1] [1]
		(iii)	high pressure can be used / lower pressure due to expense or safety cannot use a low temperature as rate would be too slow the rate would not be econon	[1] nic [1]
	(b)	(i)	ester	[1]
		(ii)	soap/sodium stearate or any acceptable salt/glycerol	[1]
		(iii)	burning both fuels forms carbon	[1]
			growing plants to make biodiesel removes carbon dioxide from atmosphere	[1]
	(c)	(i)	correct SF of an octane	[1]
		(ii)	add bromine (water)/bromine in an organic solvent result octane remains brown/orange/yellow/red result octane goes colourless/decolourises not clear/discolours colour of reagent must be shown somewhere for [3] otherwise max [2] accept equivalent test using KMnO ₄ in acid or alkali	[1] [1] [1]

2	(a	same general formula same chemical properties same functional group physical properties vary in predictable way common methods of preparation consecutive members differ by CH ₂ any two mark first two ignore others unless it contradicts a point which has been awarded a mark	[2]
	(b)	2HCOOH + CaCO ₃ → Ca(HCOO) ₂ + CO ₂ + H ₂ O not balanced = [1]	[2
		 (ii) zinc + methanoic acid → zinc methanoate + hydrogen [1] for each prod 	[2]
		(iii) protected by <u>oxide</u> layer	[1]
	(c)	butanoic acid CH ₃ -CH ₂ -CH ₂ -COOH / C ₄ H ₈ O ₂ / C ₃ H ₇ COOH / C ₄ H ₇ OOH C ₂ H ₄ O mark ecf to molecular formula	[1] [1]

3 (a)(i)	general molecular formula same functional group physical properties show trend — bp increase with n same chemical properties common methods of preparation any TWO	[2]
(ii)	C ₈ H ₁₇ OH Mass of one mole = 130 (g) if formula correct but mass wrong [1]	[2]
(b)	propan-1-ol or propan-2-ol corresponding structural formula name and formula must correspond for [2] if not ONLY [1]	[1] [1]
(c)(i)	structural formula of isomer	[1]
(ii)	carbon dioxide <u>and</u> water pentene pentanoic acid	[1] [1] [1]
		TOTAL = 10

4 (a)

		molecular formula Must be able to give isomers, need not be alkenes	[1]
		two <u>corresponding</u> isomers If do not correspond then MAX [2] out of [3]	[2]
(b)	(i)	ethanol structure	[1] [1]
	(ii)	ethane structure	[1] [1]
(c)	(i)	many simple molecules or monomers form one large one or macromolecule or chain	[1] [1]
	(ii)	addition polymer only one product- the polymer condensation - polymer and water etc	[1] [1]
	(iii)	correct unit COND evidence of polymer in structure eg shows continuation such as terminal bonds	[1] [1]
(d)	(i)	water proof or impervious or flexible or good adhesion or non-biodegradable or unreactive	[1]
	(ii)	steel in contact with water or air	[1]
	(iii)	zinc more reactive oxygen /water reacts with zinc not iron sacrificial protection zinc anodic steel receives electrons from zinc zinc forms cations cell	
		TWO valid points	[3]

TOTAL = 17